Stochastic analysis of soil hydraulic property uncertainty propagation in predictions by the SWAP model

Quirijn de Jong van Lier University of São Paulo, Piracicaba, Brazil

Focusing on the uncertainties resulting from hydraulic parameterization of the SWAP model

Retention $h-\theta$

The SWAP model employs VGM hydraulic parameters

Nonlinear least-squares analysis:				
Variable	Value	S.E.Coeff.		
ThetaR	.14030	.00872		
ThetaS	.39627	.00877		
Alpha	1.78168	.04780		
n	3.07096	.26583		
Ks	.03504	.00041		

Correlation matrix

	ThetaR	ThetaS	Alpha	n	Ks		
	1	2	3	4	5		
1	1.0000						
2	0821	1.0000					
3	.3888	.2096	1.0000				
4	.4684	.1400	.7016	1.0000			
5	0218	.0154	.0654	0768	1.0000		

Generate (many) STOCHASTIC REALIZATIONS

using Cholesky decomposition

				-		
* StochHyProp v.	2.02					5
* SAMPLE 1						
* Tr	Ts	alpha	n	1	Ks	10
-0.00079520	0.69951260	0.21734463	1.52117932	0.03692108	0.54486626	M
-0.00115651	0.68776667	0.21443641	1.95608008	0.02169501	0.45359826	
-0.00261618	0.61810911	0.14713705	2.01655555	-0.04906761	0.17158721	
0.00169656	0.68162876	0.19899122	1.76946473	0.16115542	0.41998923	
-0.00306452	0.65312523	0.20790803	1.86205351	-0.12945791	0.40838164	
-0.00157755	0.58375096	0.15299240	1.89184654	-0.10071952	0.15881126	
0.00205356	0.64643294	0.19132270	1.68927026	-0.02586325	0.42941141	
0.00388708	0.62379289	0.12976496	1.73450232	0.12321679	0.23384026	
0.00157530	0.66412598	0.21049795	1.82528758	-0.03604430	0.48599574	
0.00067051	0.64971173	0.18419911	2.00232983	-0.06217650	0.39791971	
0.00054247	0.66998225	0.21904631	1.65202427	-0.01129130	0.51265669	ts
-0.00341600	0.62594718	0.14953178	2.15735340	-0.13656601	0.17592463	
0.00433187	0.60033679	0.10410007	2.53562474	0.06524007	0.04770856	
0.00334529	0.64384621	0.13999063	2.15565705	0.15571766	0.21011572	
-0.00184498	0.66463816	0.20704147	1.61253810	-0.11030789	0.49440968	mole
0.00377259	0.59475356	0.09962637	2.44901013	0.05338990	0.02607891	mela
-0.00008015	0.65110618	0.16144577	1.98151088	0.01193557	0.30161369	
0.00066236	0.64234793	0.15373656	1.49666595	-0.00074687	0.33739102	
0.00192962	0.65054232	0.15361685	2.21762109	0.00964811	0.27613640	
0.00246992	0.60920292	0.08470164	2.40272999	0.10532485	-0.00575402	
0.00180155	0.66474342	0.22006433	1.80445659	-0.03959258	0.52509111	

ThetaS vs. Alpha, R = 0.700

This allows upgrading from deterministic to stochastic interpretation of model outputs

Softw	Diare Nare	

StochHyProp v.	2.02				
SAMPLE 1					
Tr	Ts	alpha	n	1	Ks
-0.00079520	0.69951260	0.21734463	1.52117932	0.03692108	0.54486626
-0.00115651	0.68776667	0.21443641	1.95608008	0.02169501	0.45359826
-0.00261618	0.61810911	0.14713705	2.01655555	-0.04906761	0.17158721
0.00169656	0.68162876	0.19899122	1.76946473	0.16115542	0.41998923
-0.00306452	0.65312523	0.20790803	1.86205351	-0.12945791	0.40838164
-0.00157755	0.58375096	0.15299240	1.89184654	-0.10071952	0.15881126
0.00205356	0.64643294	0.19132270	1.68927026	-0.02586325	0.42941141
0.00388708	0.62379289	0.12976496	1.73450232	0.12321679	0.23384026
0.00157530	0.66412598	0.21049795	1.82528758	-0.03604430	0.48599574
0.00067051	0.64971173	0.18419911	2.00232983	-0.06217650	0.39791971
0.00054247	0.66998225	0.21904631	1.65202427	-0.01129130	0.51265669
-0.00341600	0.62594718	0.14953178	2.15735340	-0.13656601	0.17592463
0.00433187	0.60033679	0.10410007	2.53562474	0.06524007	0.04770856
0.00334529	0.64384621	0.13999063	2.15565705	0.15571766	0.21011572
-0.00184498	0.66463816	0.20704147	1.61253810	-0.11030789	0.49440968
0.00377259	0.59475356	0.09962637	2.44901013	0.05338990	0.02607891
-0.00008015	0.65110618	0.16144577	1.98151088	0.01193557	0.30161369
0.00066236	0.64234793	0.15373656	1.49666595	-0.00074687	0.33739102
0.00192962	0.65054232	0.15361685	2.21762109	0.00964811	0.27613640
0.00246992	0.60920292	0.08470164	2.40272999	0.10532485	-0.00575402
0.00180155	0.66474342	0.22006433	1.80445659	-0.03959258	0.52509111

1. Runs the SWAP model for each stochastic parameter realization;

5

- 2. Extracts the required (userdefined) information from the SWAP output files;
- 3. Compiles selected SWAP output in a resulting file.

Functional analysis using SWAP Example 1: Predicted Transpiration during a crop season semi-arid (NE Brazil)

in this case: a significant difference between deterministic and median stochastic prediction

Functional analysis using SWAP Example 2: <u>Transpiration and Bottom Flux</u> <u>during 30 simulated years</u> in a SE Brazilian soil

Stochastic analysis reveals uncertainties and results in a different prediction

Functional analysis using SWAP Example 3: <u>Threshold pressure heads</u> <u>(flux-based FC, LP, WP)</u> in 20 SE Brazilian soils

Stochastic Analysis allows insight in uncertainties Some differences between deterministic and median stochastic prediction

Functional analysis using SWAP Example 4: <u>Plant available water (from flux-</u> <u>based FC, LP, WP)</u> in 20 SE Brazilian soils

Conclusions

- 1. The impact of VGM parameter uncertainty on SWAP model predictions can be assessed using a stochastic approach with Cholesky decomposition to generate parameter realizations;
- VGM parameters act together in the θ-h and K-h equations and do not have individual practical meaning – their functional analysis depends on a modelling framework, e.g. SWAP;
- 3. Deterministically predicted model outputs (e.g., water balance components) using mean hydraulic property parameter values may be substantially different than the median values of stochastic realizations.

Many thanks to former and current developers of the SWAP model!

Thanks for your attention.

qdjvlier@usp.br

